
Oracle® Banking Platform
SOA Extensibility Guide
Release 2.7.1.0.0
F16199-01

March 2019

Oracle Banking Platform SOAExtensibilityGuide, Release 2.7.1.0.0

F16199-01

Copyright © 2011, 2019, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictionson use
and disclosure and are protected by intellectual property laws. Except asexpressly permitted in your license
agreement or allowed by law, youmaynot use, copy, reproduce, translate, broadcast, modify, license, transmit,
distribute, exhibit, perform, publish or display anypart, in any form, or byanymeans. Reverse engineering,
disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you
find anyerrors, please report them to us in writing.

U.S. GOVERNMENT END USERS: Oracle programs, including anyoperating system, integrated software, any
programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable FederalAcquisition Regulation and agency-specific
supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs,
including anyoperating system, integrated software, anyprograms installed on the hardware, and/or
documentation, shall be subject to license termsand license restrictionsapplicable to the programs. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of informationmanagement applications. It is
not developed or intended for use in any inherently dangerousapplications, including applications that maycreate
a risk of personal injury. If you use this software or hardware in dangerousapplications, then you shall be
responsible to take all appropriate failsafe, backup, redundancy, and other measures to ensure its safe use.
Oracle Corporation and its affiliates disclaim any liability for anydamagescaused byuse of this software or
hardware in dangerousapplications.

Oracle and Java are registered trademarksof Oracle and/or its affiliates. Other namesmaybe trademarksof their
respective owners.

This software or hardware and documentationmayprovide access to or information on content, products and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its
affiliateswill not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party
content, products, or services.

Contents

Preface 8

Audience 8

Documentation Accessibility 8

Related Documents 8

Conventions 8

1 Objective and Scope 11

1.1 Overview 11

1.2 Objective and Scope 11

1.2.1 Extensibility Objective 11

1.3 Complementary Artefacts 11

1.4 Out of Scope 12

2 Overview of Use Cases 13

2.1 Extensibility Use Cases 13

2.1.1 SOA Customization 13

3 Workflow Task Routing and Assignment Rules 15

3.1 Workflow Task Routing and Assignment Rules 15

3.2 Origination Human Tasks 15

3.3 Origination Approval Human Tasks 15

4 Workflow Analytics 19

4.1 Architecture 19

4.2 OBP Workflow Analytics Extension Points 19

4.2.1 Introduction of new human task 19

4.2.2 Addition of custom business indicator(s) to existing data object 20

4.2.3 Publishing analytics data to system other than Oracle BAM 20

3

4.2.4 Publishing new DataObject from OBP Domain 20

5 SOA Customizations 23

5.1 Customization Layer 23

5.2 Customization Class 24

5.3 Enabling Application for Seeded Customization 25

5.4 SOA Customization Example Use Cases 26

5.4.1 Add a Partner Link to an Existing Process 26

5.4.2 Add a Human Task to an Existing Process 44

4

List of Figures

Figure 2–1 SOA Customization 13

Figure 3–1 SM500 page 16

Figure 3–2 SM500 page with appropriate Datatype 16

Figure 3–3 To Fetch Attribute Value 17

Figure 3–4 Custom Attributes 18

Figure 3–5 Redeploy process 18

Figure 4–1 Architecture Diagram 19

Figure 5–1 Add an entry for new Customization Layer 24

Figure 5–2 Create Customization Class 25

Figure 5–3 Enabling Application for Seeded Customization 26

Figure 5–4 Select SOA Project 27

Figure 5–5 Enter SOA Project Name 27

Figure 5–6 Configure SOA Settings 28

Figure 5–7 Create Mediator 29

Figure 5–8 Select Target Type 30

Figure 5–9 Request Transformation Map to create new mapper file 31

Figure 5–10 Mapping Input and Output string 31

Figure 5–11 Select Deployment Action 32

Figure 5–12 Deploy Configuration Settings 33

Figure 5–13 Select Deployment Server 33

Figure 5–14 Select Target SOA Server 34

Figure 5–15 Select SOA Domain 35

Figure 5–16 Test Web Service 36

Figure 5–17 Customization of SOA Application - Flow 37

5

Figure 5–18 Customization of SOA Application - Notify Customer 38

Figure 5–19 Add Partner Link Component 39

Figure 5–20 Add Invoke Component 40

Figure 5–21 Edit Copy Rules Variable 41

Figure 5–22 Add Assign Components - Reply 42

Figure 5–23 Design View of the BPEL Process 42

Figure 5–24 Test Customized Composite - Flow 43

Figure 5–25 Test Customized Composite - invokeEchoService 44

Figure 5–26 Select SOA Project 45

Figure 5–27 Create SOA Project Name 45

Figure 5–28 Configure SOA Settings 46

Figure 5–29 Configure BPEL Process Settings 46

Figure 5–30 Enter Human Task Name 47

Figure 5–31 Create Human Task - General Tab 47

Figure 5–32 Add Human Task Parameter 48

Figure 5–33 Create Human Task - Data Tab 48

Figure 5–34 Add Participant Type Details 49

Figure 5–35 Create Human Task - Assignment Tab 49

Figure 5–36 Select Human Task Parameters 50

Figure 5–37 Create Human Task - Delete Condition 50

Figure 5–38 Create Human Task - Expression Builder 51

Figure 5–39 Create Human Task - Copy Rules 51

Figure 5–40 Create Human Task - BPEL Process 52

Figure 5–41 Select Human Task Form 53

Figure 5–42 Select Human Task Form Deployment Action 54

Figure 5–43 Select Human Task Form - Weblogic Options 54

6

Figure 5–44 Add Customization Scope to SOA Application 55

Figure 5–45 Add Partner Link Component 56

Figure 5–46 Add Invoke Component 57

Figure 5–47 Add Receive Component using BPEL functions 58

Figure 5–48 Add Assign Component 59

Figure 5–49 Deploy and Test Customized SOA Composite - My Tasks Tab 60

Figure 5–50 Deploy and Test Customized SOA Composite - Flow 60

Figure 5–51 Deploy and Test Customized SOA Composite - Invoke Input 61

Figure 5–52 Deploy and Test Customized SOA Composite - Receive Output 61

7

Preface

This guide explains customization and extension of Oracle Banking Platform.

This preface contains the following topics:

n Audience

n Documentation Accessibility

n Related Documents

n Conventions

Audience
This guide is intended for the users of Oracle Banking Platform.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at
http://www.oracle.com/us/corporate/accessibility/index.html.

Access to Oracle Support

Oracle customers have access to electronic support throughMy Oracle Support. For information, visit
http://www.oracle.com/us/corporate/accessibility/support/index.html#info or visit
http://www.oracle.com/us/corporate/accessibility/support/index.html#trs if you are hearing impaired.

Related Documents
Formore information, see the following documentation:

n For installation and configuration information, see the Oracle Banking Platform Localization Installation
Guide - Silent Installation guide.

n For a comprehensive overview of security, see the Oracle Banking Platform Security Guide.

n For the complete list of licensed products and the third-party licenses included with the license, see the
Oracle Banking Platform Licensing Guide.

n For information related to setting up a bank or a branch, and other operational and administrative
functions, see the Oracle Banking Platform Administrator Guide.

n For information on the functionality and features, see the respective Oracle Banking Platform
Functional Overview documents.

n For recommendations of secure usage of extensible components, see the Oracle Banking Platform
Secure Development Guide.

Conventions
The following text conventions are used in this document:

8

http://www.oracle.com/us/corporate/accessibility/index.html
http://www.oracle.com/us/corporate/accessibility/support/index.html#info
http://www.oracle.com/us/corporate/accessibility/support/index.html#trs

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which you
supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

9

10 | Oracle Banking Platform SOA Extensibility Guide

1 Objective and Scope

This chapter defines the objective and scope of this document.

1.1 Overview
Oracle Banking Platform (OBP) is designed to help banks respond strategically to today’s business
challenges, while also transforming their business models and processes to reduce operating costs and
improve productivity across both front and back offices. It is a one-stop solution for a bank that seeks to
leverageOracle Fusion experience for its core banking operations, across its retail and corporate offerings.

OBP provides a unified yet scalable IT solution for a bank tomanage its data and end-to-end business
operations with an enriched user experience. It comprises pre-integrated enterprise applications leveraging
and relying on the underlying Oracle Technology Stack to help reduce in-house integration and testing efforts.

1.2 Objective and Scope
Most product development can be accomplished through highly flexible system parameters and business
rules. Further competitive differentiation can be achieved through IT configuration and extension support. In
OBP, additional business logic required for certain services is not always a part of the core product
functionality but could be a client requirement. For these purposes, extension points and customization
support have been provided in the application code which can be implemented by the bank and / or by
partners, wherein the existing business logic can be added with or overridden by customized business logic.
This way the time consuming activity of custom coding to enable region specific, site specific or bank specific
customizations can beminimized.

1.2.1 Extensibility Objective
The broad guiding principles with respect to providing extensibility in OBP are summarized below:

n Strategic intent for enabling customers and partners to extend the application.

n Internal development uses the same principles for client specific customizations.

n Localization packs

n Extensions by Oracle Consultants, Oracle Partners, Banks or Bank Partners.

n Extensions through the addition of new functionality or modification of existing functionality.

n Planned focus on this area of the application. Hence, separate budgets specifically for this.

n Standards based - OBP leverages standard tools and technology

n Leverage large development pool for standards based technology.

n Developer tool sets provided as part of JDeveloper and Eclipse for productivity.

1.3 Complementary Artefacts
The document is a developer’s extensibility guide and does not intend to work as a replacement of the
functional or technical specification, which would be the primary resource covering the following:

1 Objective and Scope | 11

1.4 Out of Scope

n OBP Zen training course

n OBP installation and configuration

n OBP parameterization as part of implementation

n Functional solution and product user guide

References to plugin indicate the eclipse basedOBP development plugin for relevant version of OBP being
extended. The plugin is not a product GA artefact and is ameans to assist development. Hence, the same is
not covered under product support.

1.4 Out of Scope
The scope of extensibility does not intend to suggest that OBP is forward compatible.

12 | Oracle Banking Platform SOA Extensibility Guide

2 Overview of Use Cases

The use cases that are covered in this document shall enable the developer in applying the discipline of
extensibility to OBP. While the overall support for customizations is complete in most respects, the same is
not a replacement for implementing a disciplined, thoughtful and well-designed approach towards
implementing extensions and customizations to the product.

2.1 Extensibility Use Cases
This section gives an overview of the extensibility topics and customization use cases to be covered in this
document. Each of these topics is detailed in the further sections.

2.1.1 SOA Customization
OBP Application provides the feature for customizing SOA composite applications based on the additional
requirements whichmay vary from client to client. It includes implementing the partner link to an existing
process or implementing human tasks or sub processes which can be hooked into an existing product
process.

Figure 2–1 SOA Customization

2 Overview of Use Cases | 13

14 | Oracle Banking Platform SOA Extensibility Guide

3 Workflow Task Routing and Assignment
Rules

This chapter covers the extensibility aspects of business rules used in SOA.

3.1 Workflow Task Routing and Assignment Rules
As part of overall origination workflow, different human tasks are created. Each human task can be routed to
specific assignees. Such task assignment can be configured using a business rules. All such business rules
are logically grouped together into different BPEL composites based on the functionality. Specific list of facts
are provided out of the box for rule configuration. However, more facts can bemade available for rule
configuration by customizing specific application services which return the list of facts.

Below sections provide the information about services which can be extended to includemore custom facts.

3.2 Origination Human Tasks
Custom facts can be added to the response of below application service using post extensions:

n com.ofss.fc.appx.origination.service.core.OriginationBusinessIndicatorApplicationServiceSpi

Key names used to populate the dictionary object of the service response aremade available automatically as
custom facts for configuration of business rule. These custom attributes can be accessed in the rule
configuration as below:

n getCustomTextAttribute(customAttributes,"<Custom Attribute Name>")

3.3 Origination Approval Human Tasks
Approval workflow routing rules can be extended to include existing or entirely new attributes.

This is demonstrated using an example:

For structure solution approvals, routing to be setup based on whether the task includes a secured product.

Use case:

Servic
e-id

com.ofss.fc.appx.origination.service.lending.core.application.LendingApplicationServiceSpi.co
nfirmStructureSolution

Appro
val
Proces
s

com.ofss.fc.approval.lending_confirmstructuresolution

Custo
m
attribut
e

LendingStructureSolution_IsTaskIncludesSecuredProduct

Table 3–1 Use Case

Broad steps to use custom attributes in routing rule:

3 Workflow Task Routing and Assignment Rules | 15

3.3 Origination Approval Human Tasks

n Step 1: Create custom attribute.

n Step 2: Configure adapter name that will be used to retrieve value of the custom attribute.

n Step 3: Develop the adapter.

n Step 4: Modify routing rule to include the custom adapter.

Step 1: Create the new attribute using Artifact Dependency Map (Fast Path: SM500) page

This configuration ensures that OBP fetches the name for the custom attribute as part of its attribute
evaluation framework when confirm-structure-solution is executed.

Step 1.A: Search for below service ID in Artifact Dependency Map (Fast Path: SM500) page

‘com.ofss.fc.appx.origination.service.lending.core.application.LendingApplicationServiceSpi.confirmS

tructureSolution’

Figure 3–1 SM500 page

Step 1.B: Add attribute name ‘LendingStructureSolution_IsTaskIncludesSecuredProduct’

With appropriate datatype in ‘AllowedPolicyAttributes’ under ‘Service Attributes’ tab in SM500 page as shown
below:

Figure 3–2 SM500 page with appropriate Datatype

16 | Oracle Banking Platform SOA Extensibility Guide

3.3 Origination Approval Human Tasks

Step 2: Define the attribute in Constraint Attribute config with associated adapter to fetch attribute
value

This configuration step ensures that the attribute retrieval framework executes the appropriate adapter to
fetch the value of the custom attribute.

In flx_fw_config_all_b, insert themapping of attribute and it’s associated adapter.

Example:

Use the below insert statement to map attribute and the associated adapter developed to supply attribute
value.

Figure 3–3 To Fetch Attribute Value

The category_id ‘ConstraintAttributeHelper’ (or an appropriate override) in Preferences.xml will be used to
retrieve the adapter added.

Example:

<Preference name="ConstraintAttributeHelper"
PreferencesProvider="com.ofss.fc.infra.config.impl.DBBasedPropertyProvider"

parent="jdbcpreference"

propertyFileName="select prop_id, prop_value from flx_fw_config_all_b where category_id =
'ConstraintAttributeHelper'" syncTimeInterval="1800000" />

Step 3: Add derivation logic to set the attribute value in Adapter that is mapped in config

Develop the adapter mentioned in Step 2, method name to be named appropriately.

Example:

If adapter-name in Step 2 = ‘FacilityApprovalDataMatrixAdapter’ themethod namewill be

‘getIsTaskIncludesSecuredProduct’

Step 4: Using custom fact in business rule

a. Extract the rules process corresponding to the approvals
process:OriginationAndFulfillment\process\com.ofss.fc.approval.genericrulesapprovalspi.executeapp
rovalrulesoriglen\SOA\oracle\rules\HT_LendingSpi_ConfirmStructureSolutionRules.rules

b. Open .rules file (HT_LendingSpi_ConfirmStructureSolutionRules.rules).

c. In ruleset, modify rule with the desired condition using customAttributes (see example and screenshot
below)

3 Workflow Task Routing and Assignment Rules | 17

3.3 Origination Approval Human Tasks

Figure 3–4 Custom Attributes

d. Redeploy process

Figure 3–5 Redeploy process

18 | Oracle Banking Platform SOA Extensibility Guide

4 Workflow Analytics

This chapter explains the workflow analytics of Oracle Banking Platform (OBP).

4.1 Architecture
The following architecture diagram depicts the instrumentation approach for BPEL processes as well as
humanworkflows. It also illustrates the approach to collect business indicators and themechanism to publish
them to the analytics system.

Figure 4–1 Architecture Diagram

4.2 OBP Workflow Analytics Extension Points
This section explains the extension points for OBP workflow analytics.

4.2.1 Introduction of new human task
The following steps can be performed for introducing new human task.

1. Enable business events in .task file.

2. Attribute "task Key" to be added in task payload. This is hash (#) separated string of all business key
identifiers for the task. For example, SubmissionId#ApplicationId.

3. Write business indicator extractor class for new human task by implementing
com.ofss.fc.app.adapter.workflow.task.ITaskBIExtractor.

4. OverrideWorkflowTaskConfiguration preference in config/preferences.xml and add constant for task
specific business indicator extractor.

4 Workflow Analytics | 19

4.2 OBPWorkflow Analytics Extension Points

BIEXTRACTOR$NewHumanTaskName = "<Fully qualified path of task specific business indicator
extractor class>"

5. Create new DTO extending com.ofss.fc.app.workflow.dto.bam.task.TaskMetricDTO and populate the
same in business indicator extractor class. For example, NewHumanTaskMetricDTO.

6. Create a data object class corresponding to NewHumanTaskMetricDTO, for example,
NewHumanTaskMetricDO by extending abstract class
com.ofss.fc.integration.analytics.bam.dataobject.framework.BAMDataObject.

7. Override "BAMDataObjectAssemblers" preference in config/preferences.xml and add constant for new
data object assembler.

NewHumanTaskMetricDTO = "<Fully qualified path of data object assembler class>"

8. Create data object on BAM server in the Administration tab of BAM Composer.

4.2.2 Addition of custom business indicator(s) to existing data object
The following steps can be performed to add custom business indicators to existing OriginationTaskMetricDO
data object.

1. Create new data object class, for example, CustomOriginationTaskMetricDO by extending existing
com.ofss.fc.integration.analytics.bam.dataobject.banking.origination.OriginationTaskMetricDO and
add new custom attributes.

2. Extend the existing implementation of task business indicator extractor class to populate dictionary
object of OriginationTaskMetricDTO for new custom attributes.

3. Extend the existing implementation of data object assembler to populate and return instance of
CustomOriginationTaskMetricDO.

4. Modify the definition of OriginationTaskMetricDO data object on BAM server using BAM architect tool
to add custom business indicator attributes.

4.2.3 Publishing analytics data to system other than Oracle BAM
The following steps can be performed to publish analytics data to system other thanOracle BAM.

1. Write custom implementation class CustomRealtimeAnalyticsDataPublisher by extending existing
class com.ofss.fc.app.adapter.impl.integration.analytics.RealtimeAnalyticsDataPublisher.

2. Write custom implementation class CustomAnalyticsDataPublisherFactory by implementing the
interface com.ofss.fc.app.adapter.integration.analytics.IAnalyticsDataPublisherFactory and return the
instance of CustomRealtimeAnalyticsDataPublisher class.

3. Override "AdapterFactories" preference in config/preferences.xml and override the constant value for
"ANALYTICS_DATA_PUBLISHER_FACTORY".

ANALYTICS_DATA_PUBLISHER_FACTORY = "<Fully qualified path of
CustomAnalyticsDataPublisherFactory class>"

4.2.4 Publishing new DataObject from OBP Domain
Any object from OBP Domain which extends DataTransferObject can be published to BAM server by
following simple steps explained below.

20 | Oracle Banking Platform SOA Extensibility Guide

4.2 OBPWorkflow Analytics Extension Points

1. Identify/Write the new CustomDataTransferObject that extends existing DataTransferObject which
needs to be published to BAM and has all the requisite attributes which need to be presented in BAM.

2. Write the new CustomDataObject class by extending existing class BAMDataObject and adding
desired flat attributes which are not complex types of OBP Domain. (Use Calendar for dates and
BigDecimal for amounts). Also implement methods keyFieldsAsString() and getDataObjectPath()
methods so as to return identical corresponding values as maintained for this DataObject in BAM.

3. Create new CustomDataObject in BAM through the Administration tab of BAM Composer, so as the
names of the attributes are identical to those kept in CustomDataObject in OBP Domain.

4. Create new CustomDataObjectAssembler class by implementing existing IDataObjectAssembler and
overriding to BAMDataObject() method to return the CustomDataObject assembled from source
CustomDataTransferObject.

5. Identify the preference for BAMDataObjectAssemblers from config/preferences.xml and in the
preference, add corresponding entry for the new CustomDataTransferObject as key=value pair. Here,
key is fully qualified class name string with dots replaced by underscores and value corresponds to the
fully qualified name string of the CustomDataObjectAssembler class.

6. For example, public final String com_example_CustomDataTransferObject =
"com.example.assembler. CustomDataObjectAssembler";

7. Identify the events which will publish the CustomDataObject in the system flow inside OBP Domain.
On such events, assemble the DataObject and invoke publish of existing BAMDataPublisher.

4 Workflow Analytics | 21

22 | Oracle Banking Platform SOA Extensibility Guide

5 SOA Customizations

OBP provides the functionality for customizing the SOA composite applications. The steps to customize a
SOA composite application are similar to those of customizing an ADF View Controller application with a few
differences. The similarities and differences would be apparent in the examples demonstrated in the following
sections.

The following section provides details about the SOA Components Customization. The detailed
documentation for customizing and extending the SOA Components is also available at the Oracle website:

http://docs.oracle.com/cd/E25178_01/fusionapps.1111/e16691/ext_soaedit.htm

5.1 Customization Layer
To customize an application, youmust specify the customization layers and their values in the
CustomizationLayerValues.xml file, so that they are recognized by JDeveloper.

You need to create a customization layer with name option and values demo and another bank name.

To create this customization layer, follow these steps:

1. From themainmenu, choose the File -> Open option.

2. Locate and open the fileCustomizationLayerValues.xml which is found in the <JDEVELOPER_
HOME>/jdeveloper/jdev directory.

3. In the XML editor, add the entry for a new customization layer and values as shown in the following
image.

5 SOA Customizations | 23

http://docs.oracle.com/cd/E25178_01/fusionapps.1111/e16691/ext_soaedit.htm

5.2 Customization Class

Figure 5–1 Add an entry for new Customization Layer

4. Save and close the file.

5.2 Customization Class
Before customizing an application, a customization class needs to be created which is the interface that the
Oracle Meta-data Services framework uses to define which customization layer should be applied to the
application's basemeta-data.

To create a customization class, follow these steps:

1. From themainmenu, choose File -> New.

2. Create a generic project and give a name (com.ofss.fc.demo.ui.OptionCC) to the project.

3. Go toProject Properties for this project and add the requiredMDS libraries in the classpath of the
project.

4. Create the customization class in this project. The customization classmust extend the
oracle.mds.cust.CustomizationClass abstract class.

5. Implement the following abstract methods of theCustomizationClass as follows:

n getCacheHint() - This method will return the information about whether the customization layer
is applicable to all users, a set of users, a specific HTTP request or a single user.

24 | Oracle Banking Platform SOA Extensibility Guide

5.3 Enabling Application for Seeded Customization

n getName() - This method will return the name of the customization layer.

n getValue() - This method will return the customization layer value at runtime.

The screenshot below depicts a sample implementation of the abovemethods.

Figure 5–2 Create Customization Class

6. Build this class and deploy the project as a JAR file (com.ofss.fc.demo.ui.OptionCC.jar). This JAR file
should only contain the customization class.

7. Place this JAR file in the location <JDEVELOPER_HOME>/jdeveloper/jdev/lib/patches so that the
customization class is available in the classpath of Jdeveloper.

5.3 Enabling Application for Seeded Customization
Seeded customization of an application is the process of taking a generalized application andmaking
modifications to suit the needs of a particular group. The generalized application first needs to be enabled for
seeded customization before any customizations can be done on the application.

To enable seeded customization for the application, follow these steps:

5 SOA Customizations | 25

5.4 SOA Customization Example Use Cases

1. Go to theProject Properties of the application's project.

2. In theADF View section, check theEnable Seeded Customizations option.

3. In the Libraries andClasspath section, add the previously deployed com.ofss.fc.demo.ui.OptionCC.jar
which contains the customization class.

Figure 5–3 Enabling Application for Seeded Customization

4. In theApplication Resources tab, open the adf-config.xml present in theDescriptors/ADFMETA-
INF folder.

5. In the list of Customization Classes, remove all the entries and add the
com.ofss.fc.demo.ui.OptionCC.OptionCC class to this list. The sections below will elaborate in detail
the actual customization of a SOA process with examples.

5.4 SOA Customization Example Use Cases
This section describes the examples use cases of SOA customization.

5.4.1 Add a Partner Link to an Existing Process
In this example of SOA customization, we will be adding a Partner Link call to an Echo Service to an existing
SOA process. The Echo Service will take a string input and respond with the same string as output.

The following section will explain how to create a SOA project and process with the example of Echo Service.

Step 1 Create SOA Project
Youwill need to create a SOA project to contain the Echo Service process. To create the SOA project, follow
these steps:

1. In theMainMenu, go to File -> New.

2. In the Project Gallery that opens, select SOA Project and click OK.

26 | Oracle Banking Platform SOA Extensibility Guide

5.4 SOA Customization Example Use Cases

Figure 5–4 Select SOA Project

3. In theCreate SOA Projectwizard, enter appropriate project name (EchoService) and location for the
project.

4. Click Next.

Figure 5–5 Enter SOA Project Name

5. In the next dialogue of the wizard, enter appropriate name (EchoService) for the SOA composite.

5 SOA Customizations | 27

5.4 SOA Customization Example Use Cases

6. Select Empty Composite from the drop-downmenu.

7. Click Finish.

Figure 5–6 Configure SOA Settings

Step 2 Add Mediator Component
Youwill need to add aMediator component to the BPEL process to process the input to the SOA process and
generate an output.

To add theMediator, follow these steps:

1. From theProject Navigator tab, select and openEchoService.bpel in theDesignmode.

2. From theComponent Palette tab, inSOA Components section, select theMediator component.

3. Drag and drop it onto the bpel process.

4. In theCreate Mediator dialogue that opens, enter appropriate name (EchoService).

5. From the Templates drop-down, select Synchronous Interface.

6. Check theCreate Composite Service with SOAP Bindings option.

7. Click OK.

28 | Oracle Banking Platform SOA Extensibility Guide

5.4 SOA Customization Example Use Cases

Figure 5–7 Create Mediator

8. AnEchoService.mplan file will be created. Open this file inDesignmode.

9. In theRouting Rules section, click the icon forAdd.

10. Select Static Routing Rule from pop-upmenu.

11. In the Target Type dialogue that opens, click Echo.

5 SOA Customizations | 29

5.4 SOA Customization Example Use Cases

Figure 5–8 Select Target Type

A Static Routing section will be added to the screen.

12. Click the icon next to the Transform Using drop-down.

13. In theRequest Transformation Map dialogue that opens, select the optionCreate New Mapper
File.

14. Click OK.

30 | Oracle Banking Platform SOA Extensibility Guide

5.4 SOA Customization Example Use Cases

Figure 5–9 Request Transformation Map to create newmapper file

15. This will create a singleString_to_singleString.xsl file. Open this file inDesignmode. You will see the
input parameters in tree format on the left hand side and the output parameters on the right hand side of
the screen.

16. In this case, the input and output contain a single string.

17. Select the input string from the left hand side and drag and drop it to the output string on the right hand
side. This will create amapping between input and output parameters.

Figure 5–10 Mapping Input and Output string

18. Save all files and build the project.

Step 3 Deploy Project to SOA Server
Youwill need to deploy this project to a SOA Server. From theAdmin team, get details of the SOA Server and
configure it in your JDeveloper.

5 SOA Customizations | 31

5.4 SOA Customization Example Use Cases

After adding the SOA Server to your JDeveloper, follow these steps to deploy theEchoService composite to
the server:

1. In theProject Navigator tab, right click the project and select Deploy.

2. In theDeploy EchoService dialogue that opens, select Deploy toApplication Server from the list.

3. Click Next.

Figure 5–11 Select Deployment Action

4. In the Deploy Configuration dialogue, check the optionOverwrite any existing composites with the
same revision ID.

32 | Oracle Banking Platform SOA Extensibility Guide

5.4 SOA Customization Example Use Cases

Figure 5–12 Deploy Configuration Settings

5. Click Next.

6. From the list of Application Servers, select the appropriate SOA Server.

Figure 5–13 Select Deployment Server

7. Click Next.

8. Select the appropriatePartition of the SOA Server where the composite should be deployed.

5 SOA Customizations | 33

5.4 SOA Customization Example Use Cases

Figure 5–14 Select Target SOA Server

9. Click Finish.

Step 4 Test Echo Service
After deploying theEchoService composite to a SOA Server, you can test it through the EM console:

1. Log in to em console of the SOA Server to which the composite is deployed.

2. From theSOA Domain select theEchoService composite.

34 | Oracle Banking Platform SOA Extensibility Guide

5.4 SOA Customization Example Use Cases

Figure 5–15 Select SOA Domain

3. On the right hand side panel, you can see theDashboardwhich lists the instances of SOA requests to
that composite andmany other options.

4. Click the Test button to test the composite.

5 SOA Customizations | 35

5.4 SOA Customization Example Use Cases

Figure 5–16 Test Web Service

5. In the Input Arguments section, enter input and click Test Web Service. You will be able to see the
response in theResponse section.

Step 5 Add Customizable Scope to SOA Application
By default, a BPEL process in itself is not customizable. In addition to the steps followed to enable
customizations in a SOA application, you will need to add aScope component to the BPEL process and
enable it for customizations.

To demonstrate customizations of a SOA process, we will be using the BPEL process
NotifyCustomerHubProcess present in the composite com.ofss.fc.workflow.process.NotifyCustomerHub.

To see the flow of theNotifyCustomerHubProcess before customizations:

1. Deploy the composite to a SOA Server.

2. Log in to the em console and select the process from SOA Domain.

3. From theDashboard, click Test.

4. Enter appropriate input and click Test Web Service.

5. From theDashboard, click an Instance of the composite request.

6. Select the Flow tab to see the flow of the process.

36 | Oracle Banking Platform SOA Extensibility Guide

5.4 SOA Customization Example Use Cases

Figure 5–17 Customization of SOA Application - Flow

7. Open the SOA application which contains the base composite which will be customizing. The
aforementioned process is present in theOriginationAndFulfillment application inside the
com.ofss.fc.workflow.NotifyCustomerHub project.

To add a customizable scope to the BPEL process, follow these steps:

1. Open theNotifyCustomerHubProcess.bpel file inDesignmode.

2. From theComponent Palette panel on the right side, in theBPELConstructs section, drag theScope
component and drop it on to the BPEL process as shown in the figure.

3. Double-click the component and enter appropriate name (EchoServiceScope) for the component.

4. Drag and drop the existingAssign component labeled setTitle on to the newly added
EchoServiceScope component.

5 SOA Customizations | 37

5.4 SOA Customization Example Use Cases

Figure 5–18 Customization of SOA Application - Notify Customer

5. Right click theScope component and select Customizable from the context menu.

6. Save all the changes and restart JDeveloper inCustomization Developer Role.

Step 6 Customize the SOA Composite
After adding aCustomizable Scope to the base composite, you can start performing customizations in
JDeveloper's Customization Developer Role.

When you open theNotifyCustomerHubProcess.bpel file inDesignmode, you will notice that all other
components in the process, except the customizableEchoServiceScope component, are disabled. This
means that your customizations are limited to that scope.

In the following sections, we will be adding aPartner Link call to the previously createdEchoServiceBPEL
process and other required components in the customizationmode.

Step 7 Add Partner Link Component
To add aPartner Link to the BPEL process, follow these steps:

1. From the Project Navigator, open the NotifyCustomerHubProcess.bpel file in Designmode.

2. From theComponent Palette panel on the right side, in theBPELConstructs section, drag thePartner
Link component and drop it on to thePartner Links section of the BPEL process.

3. In theCreate Partner Link dialogue that opens, enter appropriate name (EchoService) for the partner
link.

38 | Oracle Banking Platform SOA Extensibility Guide

5.4 SOA Customization Example Use Cases

4. In theWSDLSettings section of the dialogue, enter the URL for the previously createdEchoService
composite.

5. You will get alert notifying that there are no Partner Links defined in the current WSDLwith an option to
create a wrapperWSDL file with partner links defined for specifiedWSDL.

6. Click Yes. A new EchoServiceWrapper.wsdl file will be created which contains the partner links.

7. Select the newly defined partner link type and partner role in thePartner Link Type andPartner Role
drop-down.

8. Select Not Specified option in theMy Role drop-down.

Figure 5–19 Add Partner Link Component

Step 8 Add Invoke Component
Youwill need to add an Invoke component to invoke the previously added partner link call toEchoService.

To add Invoke component, follow these steps:

1. From theComponent Palette panel on the right side, in theBPELConstructs section, drag the Invoke
component and drop it on the BPEL process inside theEchoServiceScope component.

2. Click the Invoke component and drag it to the previously addedEchoService partner link.

3. Double-click the Invoke component.

4. In theEdit Invoke dialogue that opens, enter an appropriate name (invokeEchoService) for the
component.

5. Click the icon for adding a new variable in the Input Variable andOutput Variable sections.

6. Click OK to save the changes.

5 SOA Customizations | 39

5.4 SOA Customization Example Use Cases

Figure 5–20 Add Invoke Component

Step 9 Add Assign Components
AnAssign component is used to assign values to a variable. These values can be directly assigned from one
variable to another or modified using BPEL functions available.

TheEchoService accepts a single string as an input and gives a single string as an output. The Input Variable
andOutput Variable defined in the previously created invokeEchoService component will be used to hold the
input value for theEchoService and the output returned respectively.

In our case, we will need to add twoAssign components for following purposes:

n To populate the Input Variable of the invokeEchoService component with the value returned by the
existing setTitle component.

n To populate the setTitle component with the value returned in theOutput Variable of the
invokeEchoService component.

n To add theAssign components

To add theAssign components, follow these steps:

40 | Oracle Banking Platform SOA Extensibility Guide

5.4 SOA Customization Example Use Cases

1. From theComponent Palette panel on the right side, in theBPELConstructs section, drag theAssign
component and drop it on the BPEL process inside theEchoServiceScope component between the
setTitle and invokeEchoService components.

2. Double-click theAssign component.

3. In theEdit Assign dialogue that opens, enter appropriate name (copyToEchoServiceInput) for the
component.

4. In theCopy Rules tab, select the compositeInstanceTitle from the left hand side tree and drag it to the
invokeEchoService_inputVariable on the right hand side screen as shown in the figure.

5. Click OK.

Figure 5–21 Edit Copy Rules Variable

6. Repeat the above steps for anotherAssign component labeled copyFromEchoServiceOutput. This
component should be present after the invokeEchoService component.

TheCopy Rules for this component should be as shown in the figure below.

5 SOA Customizations | 41

5.4 SOA Customization Example Use Cases

Figure 5–22 Add Assign Components - Reply

7. Save all the changes.

TheDesign view of the BPEL process should look as shown in the figure below:

Figure 5–23 Design View of the BPEL Process

Step 10 Test the Customized Composite
After performing the customizations, build the project and deploy it to a SOA Server. You will need to include
theCustomization Class JAR in the runtime classpath of the deployed application.

42 | Oracle Banking Platform SOA Extensibility Guide

5.4 SOA Customization Example Use Cases

To test the customized composite, follow these steps:

1. Log in to the em console and select the composite from theSOA Domain.

2. Click Test and enter appropriate input.

3. On theDashboard panel, click the composite Instance. In the Flow panel of the screen, you will be able
to see the flow of the customized composite.

Figure 5–24 Test Customized Composite - Flow

4. Click the invokeEchoService component from the flow to see the request and response XML for the
invoke operation to the partner link.

5 SOA Customizations | 43

5.4 SOA Customization Example Use Cases

Figure 5–25 Test Customized Composite - invokeEchoService

5.4.2 Add a Human Task to an Existing Process
This example demonstrates how to add aHuman Task component mode.

In this example of SOA customization, we will be adding aHuman Task to a BPEL process. Instead of adding
theHuman Task in customizationmode, we will build a separate BPEL process with the human task and then
customize the base composite to include aPartner Link call to that BPEL process.

The following section will demonstrate how to create a BPEL process withHuman Task. The human task will
take the title as a string input and will have the outcomes REJECT andAPPROVE. The BPEL process will
invoke the human task passing the title as input. Based on the outcome of the human task, the title will be
suitably modified and returned by the BPEL process.

Step 1 Create SOA Project
Youwill need to create a SOA project to contain the Echo Service process. To create the SOA project, follow
these steps:

1. In theMainMenu, go to File -> New.

2. In the Project Gallery that opens, select SOA Project.

3. Click Ok.

44 | Oracle Banking Platform SOA Extensibility Guide

5.4 SOA Customization Example Use Cases

Figure 5–26 Select SOA Project

4. In theCreate SOA Projectwizard, enter appropriate project name (TitleApproval) and location for the
project and click Next.

Figure 5–27 Create SOA Project Name

5. In the next dialogue of the wizard, enter appropriate name (TitleApproval) for the SOA composite.

6. Select CompositeWith BPEL Process from the drop-downmenu.

5 SOA Customizations | 45

5.4 SOA Customization Example Use Cases

7. Click Finish.

Figure 5–28 Configure SOA Settings

8. The dialogCreate BPEL Process will open. Enter a name (TitleApprovalProcess) for the process and
select Asynchronous BPEL Process from the templates drop-down.

Figure 5–29 Configure BPEL Process Settings

Step 2 Create Human Task
After defining the BPEL process, you will need to add theHuman Task component to the process. To add the
Human Task, follow these steps:

46 | Oracle Banking Platform SOA Extensibility Guide

5.4 SOA Customization Example Use Cases

1. From theProject Navigator tab, select and open composite.xml in theDesignmode.

2. From theComponent Palette tab, inSOA Components section, select theHuman Task component
and drag and drop it onto the components section of the composite.xml.

3. In theCreate Human Task dialog that opens, enter a name (TitleApprovalHumanTask) for the human
task.

4. Click OK.

Figure 5–30 Enter Human Task Name

5. From Project Navigator, select and open TitleApprovalHumanTask.task file inDesignmode. This file
has the human task definition.

6. In theGeneral section, specify a Task Title andDescription for the human task.

Figure 5–31 Create Human Task - General Tab

7. In theData section, click the icon for add task parameter.

8. In theAdd Task Parameter dialog, specify the parameter type and name for the input to the human
task. In our case, the input task parameter would be a string title.

5 SOA Customizations | 47

5.4 SOA Customization Example Use Cases

Figure 5–32 Add Human Task Parameter

Figure 5–33 Create Human Task - Data Tab

TheAssignment section is used to define theUsers orUser Groups to which the human task should
be assigned.

9. Double-click Edit Participant.

10. In theAdd Participant Type dialog, check the Value-based option forSpecify Attributes Using.

11. Click the icon for adding a value.

12. Select theUser By Name option and enter the name of your user (weblogic).

48 | Oracle Banking Platform SOA Extensibility Guide

5.4 SOA Customization Example Use Cases

Figure 5–34 Add Participant Type Details

Figure 5–35 Create Human Task - Assignment Tab

13. From the Project Navigator, open the TitleApprovalProcess.bpel file inDesignmode.

14. From theComponent Palette, select the component Human Task and drag-drop it on to the BPEL
process.

15. Click the icon to add task parameter.

16. In the Task Parameters dialog, select the string input to the BPEL process.

5 SOA Customizations | 49

5.4 SOA Customization Example Use Cases

Figure 5–36 Select Human Task Parameters

17. In the task outcomes Switch in the BPEL process, delete the condition for otherwise.

Figure 5–37 Create Human Task - Delete Condition

18. From theComponent Palette, select theAssign component and drag-drop it to theREJECT outcome
of the switch.

19. Enter a name (rejectTitle) for the component.

50 | Oracle Banking Platform SOA Extensibility Guide

5.4 SOA Customization Example Use Cases

20. In theCopy Rules section of the assign, use theExpression Builder to set the output string variable of
the BPEL process to '<title> - Rejected'.

Figure 5–38 Create Human Task - Expression Builder

Figure 5–39 Create Human Task - Copy Rules

21. Save all changes to the human task. The BPEL process should look as shown in the figure below.

5 SOA Customizations | 51

5.4 SOA Customization Example Use Cases

Figure 5–40 Create Human Task - BPEL Process

22. Deploy the SOA process to the server as mentioned in the previous example.

Step 3 Create Human Task Form
TheHuman Task is visible to assigned users in theBPMWorklist application. To display the task parameters
and payload for the task, you will need to create a task-flow with theHuman Task Form. This task form can
be auto generated through the process. Follow these steps:

1. From the Project Navigator, open the TitleApprovalHumanTask.task file inDesignmode.

2. Click the button forCreate Task Form.

3. Select theAuto-generate Task Form option from the context menu.

52 | Oracle Banking Platform SOA Extensibility Guide

5.4 SOA Customization Example Use Cases

Figure 5–41 Select Human Task Form

4. Enter a name (TitleApprovalHumanTask) and location for the human task form project.

5. Click Finish.

The generated human task form project will have default file names. Re-Factor file names for form and page
definition using appropriate naming conventions.

Step 4 Deploy Human Task Form Project
Youwill need to deploy the human task form project on the UI server for the previously deployed SOA
process. To deploy, follow these steps:

1. Clean and build the project.

2. Right-click the project and select Deploy from the context menu.

3. In theDeploy dialog that opens, select theDeploy to ApplicationServer option from the list and click
Next.

4. Select the appropriate UI server for the SOA server.

5. Click Finish.

5 SOA Customizations | 53

5.4 SOA Customization Example Use Cases

Figure 5–42 Select Human Task Form Deployment Action

Figure 5–43 Select Human Task Form - Weblogic Options

54 | Oracle Banking Platform SOA Extensibility Guide

5.4 SOA Customization Example Use Cases

Step 5 Add Customizable Scope to SOA Application
To demonstrate customizations of a SOA process, we will be using the BPEL process
NotifyCustomerHubProcess present in the composite com.ofss.fc.workflow.process.NotifyCustomerHub.

Open the SOA application which contains the base composite which will be customizing. The aforementioned
process is present in theOriginationAndFulfillment application inside the
com.ofss.fc.workflow.NotifyCustomerHub project.

To add a customizable scope to the BPEL process, follow these steps:

1. Open theNotifyCustomerHubProcess.bpel file inDesignmode.

2. From theComponent Palette panel on the right side, in theBPELConstructs section, drag theScope
component and drop it on to the BPEL process as shown in the figure.

3. Double click the component and enter appropriate name for the component.

4. Drag and drop the existingAssign component labeled setTitle on to the newly addedScope
component.

Figure 5–44 Add Customization Scope to SOA Application

5. Right-click theScope component and select Customizable from the context menu.

6. Save all the changes and restart JDeveloper inCustomization Developer Role.

Step 6 Customize the SOA Composite
After adding aCustomizable Scope to the base composite, you can start performing customizations in
JDeveloper's Customization Developer Role.

5 SOA Customizations | 55

5.4 SOA Customization Example Use Cases

When you open theNotifyCustomerHubProcess.bpelf ile in Designmode, you will notice that all other
components in the process, except the customizable Scope component, are disabled. This means that your
customizations are limited to that scope.

In the following sections, we will be adding aPartner Link call to the previously created TitleApproval BPEL
process and other required components in the customizationmode.

Step 7 Add Partner Link Component
To add aPartner Link to the BPEL process, follow these steps:

1. From the Project Navigator, open the NotifyCustomerHubProcess.bpel file in Designmode.

2. From theComponent Palette panel on the right side, in theBPELConstructs section, drag the Partner
Link component and drop it on to thePartner Links section of the BPEL process.

3. In theCreate Partner Link dialogue that opens, enter appropriate name (TitleApproval) for the partner
link.

4. Select the following options:

a. TitleApprovalProcess as the Partner Link Type.

b. TitleApprovalProcessProvider as the Partner Role.

c. TitleApprovalProcessRequester as theMy Role.

Figure 5–45 Add Partner Link Component

Step 8 Add Invoke Component
Youwill need to add an Invoke component to invoke the previously added partner link call to TitleApproval. To
add Invoke component, follow these steps:

56 | Oracle Banking Platform SOA Extensibility Guide

5.4 SOA Customization Example Use Cases

1. From theComponent Palette panel on the right side, in theBPELConstructs section, drag the Invoke
component and drop it on the BPEL process inside theScope component.

2. Click the Invoke component and drag it to the previously added TitleApproval partner link.

3. Double-click the Invoke component.

4. In theEdit Invoke dialogue that opens, enter an appropriate name (invokeTitleApproval) for the
component.

5. Click the icon for adding a new variable in the Input Variable section.

6. Click OK to save the changes.

Figure 5–46 Add Invoke Component

Step 9 Add Receive Component
Youwill need to add aReceive component to receive output from the previously added partner link call to
TitleApproval. To addReceive component, follow these steps:

1. From theComponent Palette panel on the right side, in theBPELConstructs section, drag the Invoke
component and drop it on the BPEL process inside theScope component.

2. Click theReceive component and drag it to the previously added TitleApproval partner link.

3. Double-click theReceive component.

5 SOA Customizations | 57

5.4 SOA Customization Example Use Cases

4. In theEdit Receive dialogue that opens, enter an appropriate name (receiveTitleApproval) for the
component.

5. Click the icon for adding a new variable in theOutput Variable section.

6. Click OK to save the changes.

Figure 5–47 Add Receive Component using BPEL functions

Step 10 Add Assign Components
AnAssign component is used to assign values to a variable. These values can be directly assigned from one
variable to another or modified using BPEL functions available.

The TitleApproval accepts a single string as an input and gives a single string as an output. The Input Variable
andOutput Variable defined in the previously created invokeTitleApproval and receiveTitleApproval
components will be used to hold the input value for the TitleApproval and the output returned respectively.

In our case, we will need to add twoAssign components for following purposes:

n To populate the Input Variable of the invokeTitleApproval component with the value returned by the
existing setTitle component.

n To populate the setTitle component with the value returned in theOutput Variable of the
receiveTitleApproval component.

n Add the two requiredAssign components and save all changes.

The customized process should look as shown in the figure below.

58 | Oracle Banking Platform SOA Extensibility Guide

5.4 SOA Customization Example Use Cases

Figure 5–48 Add Assign Component

Step 11 Deploy and Test Customized SOA Composite
After performing the customizations, build the project and deploy it to a SOA Server. You will need to include
theCustomization Class JAR in the runtime classpath of the deployed application.

To test the customized composite, follow these steps:

1. Log in to the em console and select the composite from theSOA Domain.

2. Click Test and enter appropriate input. A Human Task will be created and assigned to the user as
specified in the human task definition.

3. Log in to theBPMWorklist application with the appropriate user. You will be able to see the previously
created task on the dashboard.

4. Select the task from the list and click Approve orReject button to perform approve or reject action on
the task.

5 SOA Customizations | 59

5.4 SOA Customization Example Use Cases

Figure 5–49 Deploy and Test Customized SOA Composite - My Tasks Tab

5. On theDashboard panel of the em, click the composite Instance.

6. In the Flow panel of the screen, you will be able to see the flow of the customized composite.

Figure 5–50 Deploy and Test Customized SOA Composite - Flow

60 | Oracle Banking Platform SOA Extensibility Guide

5.4 SOA Customization Example Use Cases

7. Click the invokeTitleApproval component to see the request xml for the partner link call to
TitleApproval process.

Figure 5–51 Deploy and Test Customized SOA Composite - Invoke Input

8. Click the receiveTitleApproval component to see the response xml for the partner link call to
TitleApproval process.

Figure 5–52 Deploy and Test Customized SOA Composite - Receive Output

5 SOA Customizations | 61

	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Objective and Scope
	1.1 Overview
	1.2 Objective and Scope
	1.2.1 Extensibility Objective

	1.3 Complementary Artefacts
	1.4 Out of Scope

	2 Overview of Use Cases
	2.1 Extensibility Use Cases
	2.1.1 SOA Customization

	3 Workflow Task Routing and Assignment Rules
	3.1 Workflow Task Routing and Assignment Rules
	3.2 Origination Human Tasks
	3.3 Origination Approval Human Tasks

	4 Workflow Analytics
	4.1 Architecture
	4.2 OBP Workflow Analytics Extension Points
	4.2.1 Introduction of new human task
	4.2.2 Addition of custom business indicator(s) to existing data object
	4.2.3 Publishing analytics data to system other than Oracle BAM
	4.2.4 Publishing new DataObject from OBP Domain

	5 SOA Customizations
	5.1 Customization Layer
	5.2 Customization Class
	5.3 Enabling Application for Seeded Customization
	5.4 SOA Customization Example Use Cases
	5.4.1 Add a Partner Link to an Existing Process
	5.4.2 Add a Human Task to an Existing Process

